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Abstract. Solutions to the symbol grounding problem, in psychologically plau-
sible cognitive models, have been based on hybrid connectionist/symbolic ar-
chitectures, on robotic approaches and on connectionist only systems. This pa-
per presents new simulations on the use of neural network architectures for the 
grounding of symbols on categories. In particular, the connectivity patterns be-
tween layers of the networks will be manipulated to scale up the performance 
of current connectionist models for the acquisition of higher-order categories 
via grounding transfer. 

1   The Grounding of Symbols in Categories 

Cognitive models dealing with linguistic and symbol-manipulation tasks can use 
symbols that are either grounded or ungrounded (i.e. self-referential). Grounded 
symbols are those inherently significant to the cognitive system, such as an agent, 
and not mediated by the interpretation of an external user. Self-referential symbolic 
systems are those that use symbols that have no grounding in any other module of 
the cognitive agent. It has been claimed [5] that the cognitive relevance and psycho-
logical plausibility of a self-referential symbolic system is diminished as a result of 
the symbol grounding problem. To solve the problem, Harnad [5] suggested that 
symbols should be intrinsically linked to the agent’s ability of acquiring categories 
from everyday experience it has of its environment. In particular, it is necessary that 
some basic symbols are directly grounded on sensorimotor categories. Subsequently, 
new (grounded) categories can be formed through the combination of previously 
grounded basic symbols.  

Hybrid symbolic-connectionist models were originally proposed as ideal candi-
dates for solving the symbol grounding problem [6]. More recently, alternative ap-
proaches have been introduced. Robotics approaches to symbol grounding focus on 
social learning and interaction between agents (including robots, internet agents and 
humans) to ground shared symbol communication systems. This has been imple-
mented, for example, in experiments on robotic language games [9]. Fully connec-
tionist models have also been proposed to deal with the symbol grounding problem 
[1,7,8]. For example, in [1] the ability of neural networks to acquire a small set of 



basic categories through direct sensorimotor grounding was tested. The same net-
works were subsequently trained to acquire new higher-order categories solely 
through combination of the name of basic categories (symbolic theft). These net-
works were able to transfer the grounding from sensorimotor categories to higher-
order categories learnt via symbol combination. Such an approach has also been used 
in evolutionary simulations of language origins [2].  

Research on the connectionist implementation of grounded symbolic cognitive 
agents is still in progress. In particular, effort has focused on the design of modular 
connectionist architectures and its contribution in dealing with the nature/nurture 
debate (e.g. [3]). This paper presents new simulations based on the manipulation of 
the connectivity pattern of multi-layer perceptrons for the grounding of symbols on 
categories. In addition, it will deal with some problems of current connectionist ar-
chitectures, such as the scaling up of categories and symbols. 

2   Simulation One 

In the first model, Cangelosi, Greco and Harnad’s [1] model (CGH, thereafter) will 
be expanded to deal with larger category sets, and to look at different aspects of the 
transfer of grounding. In previous studies [10], the same fully-connected architecture 
from CGH was used with larger category sets. These included extra entry-level cate-
gories (e.g. 3 basic categories, each constituted by 2 exemplars), larger entry-level 
categories (2 basic categories, each constituted by 3 exemplars), and more high-order 
levels of categories (27 basic order categories which form 9 high-order categories, 
which then form 3 higher-order categories). Fully connected multi-layer perceptrons 
failed to transfer the grounding in any of the three levels of extension of the model. 
This indicated a significant shortcome of the proposed neural network model [1] for 
the symbol grounding. This paper presents a series of new simulations in which 
some of these limitations have been overcome by manipulating the pattern of connec-
tions between groups of units. 

The goal of the first simulation is to use a fully connectionist architecture to scale 
up the performance of CGH with more categories (4x4 basic and 4 higher-order 
categories).  

2.1   The Stimulus Set 

The total stimulus set consisted of 396 images, 216 for the training and 180 for the 
generalization test (cf. prototypical stimuli in Fig. 1). These images were derived 
from the animal picture set of the second experiment of CGH [1]. Each stimulus 
consists of a 50x50 pixel image. A single image can represent an isolated shape, a 
texture or an animal obtained by combining a specific shape and texture. Four differ-
ent animal shapes (e.g. a horse shape), four textures (e.g. a striped pattern) and four 
animals (zebra = horse shape + stripes pattern) were used.  The four shapes and the 
four textures constitute the (basic) entry-level categories. These are learned through 
direct sensorimotor grounding in categorization and naming learning stages. The 



four animals constitute the higher-order categories and are learned through symbolic 
theft. These are also used for the grounding transfer test only.  

The training stimulus set was augmented by placing each image of the 8 entry-
level categories into 27 different positions on the retina. This resulted in 216 training 
images. The testing set was also augmented by placing the 4 animals in 45 different 
positions in the retina image (9 spatial translation of the shapes x 4 translation of the 
texture position). 

 

Fig. 1. Prototype of categories used in simulation 1. (Left) The shapes and tex-
tures of the Entry-Level categories. (Right) Higher-Level categories. 

2.2   The Neural Network and Training Procedure 

The architecture of the network has been significantly changed with respect to that of 
CGH. Each network has three layers of units, with connections to and from hidden 
units modularly organized. The network contains 61 input units, 49 for the retina 
and 12 for the category names (Fig. 2). The same type and number of units are used 
in the output layer. The 49 (7x7) retina input units consists of gaussian receptive 
field units. These process the 50x50 pixels of the original image, each using a square 
receptive field of 11x11 pixel [1,4]. Retina units are divided into two groups, the 
periphery and the center. The 6 hidden units are also divided into two groups of 3 
units each, one specialized for shapes and one for textures. The periphery input units 
send connections only to the 3 shape hidden units. The retina central units send 
connections only to the texture hidden units. This is due to the fact that the units in 
the periphery of the retina encode the part of the image representing the various 
animal shapes. The central units encode the texture in the center of images. Twelve 
localist symbolic input and output units encode the category names (4 entry-level 
shapes, 4 entry-level textures, 4 higher-level animals). 

The networks were trained using the error backpropagation algorithm. Training 
was similar to that of CGH and consisted of three stages: prototype sorting, entry-
level learning and higher-level naming and imitation (Fig. 3a). During the prototype 



sorting stage (i.e. entry-level categorization), networks learn the basic categories (4 
animal shape and 4 textures) by receiving input exclusively from the retina images 
and responding with a retina representation of the prototype of the category (e.g. a 
fixed, centered shape of a horse). The entry-level learning stage consists of two net-
work activation cycles, the naming and imitation cycles. In the naming cycle, the 
network sees the retina image and responds in output with the prototypical retinal 
image and the localist unit encoding the category name. In the imitation, only the 
symbolic units are used in both the input and the output layers. During the first two 
stages, learning occurs through direct trial and error experience supervised by cor-
rective feedback (‘sensorimotor toil’ ). Therefore, names acquired this way can be 
considered as symbols grounded in retinal input. In the higher-level stage the net-
works acquired new names defined solely on the basis of symbolic strings containing 
combinations of previously grounded names (‘symbolic theft’ ). 

The final stage consisted of the grounding transfer test. New retina images exhib-
iting combinations of previously learned shapes and textures (e.g. images of zebras 
obtained by combining a horse shape and the striped pattern) were presented to the 
networks. The test aims to establish whether the networks, which have never seen 
these images before, are able to correctly categorize and name images with entry- 
and higher-level symbols. 

periphery centre individualstexturesshapes

individualstexturesshapestexturesshapes

 

Fig. 2. Neural network architecture for simulation 1 

2.3   Results 

The simulation consisted of the training of 10 networks with different initial random 
weights. The momentum was 0.9 for all stages. The learning rate was 0.2 for the first 
stage and 0.5 for stages two and three. The stimuli were always presented in random 
order. All networks completed the three training tasks successfully. After training, 
all networks learnt the various entry- and higher-level categories. The percentage of 
images correctly categorized in all training stages is 100%. The percentage of correct 
responses (i.e. production of the correct output name) was computed by using the 
unit with highest activation to select the name of the input image. 

The results on the grounding transfer test were also very positive. About 80% of 
higher-order animal images were correctly categorized and names. This clearly 



shows that grounding is “ transferred”  from directly grounded names to higher-order 
ones (grounding transfer). Moreover, the networks were able to give the correct sen-
sorimotor response when they received the name of a higher-level category in input 
(inverse grounding transfer).  

This model dealt well with a scaled up stimulus set of 4x4 basic categories and 4 
higher-order categories. However, the separation of input and output retina units into 
peripherical and central units was somewhat artificial. This separation was essential 
to achieve successful grounding transfer results. It is likely that this was due to the 
design of stimuli with no overlap in the retina for the position of the animal shapes 
and the texture pattern. In the next model, this problem will be dealt with by using a 
stimulus set with complete overlap of entry-level category features. 
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Fig. 3. Training and test stages for simulation one (3a) and two (3b). EL = 
Entry-Level, HL=Higher-level categories. 

3   Simulation Two 

This simulation will use a new neural network architecture and a new set of catego-
rization stimuli. The objective is to avoid the artificial division of retina units into 
peripheral and central units. This division did not have any plausible justification, 
but was simply introduced to facilitate the network in the classification of the specific 
set of animal picture stimuli. Only the modular organization of hidden-to-output 
connections will be preserved. 



3.1   The Stimulus Set 

The stimuli consisted of 81 abstract images, 54 for training purposes and 27 reserved 
for testing. Each image, constituted by a 5x5 pixel drawing, was obtained by combin-
ing 3 different shapes (square, cross, dots) with 3 different colors (red, green, blue) 
in 9 different positions (Fig. 4). Every pixel of the image is presented to the network 
with three input units, coding the primary color components (red, green, blue: RGB).  

 

Fig. 4. Sample training and testing stimuli for simulation 2 

 

Fig. 5. The neural network architecture of simulation 2 

The names of categories are encoded with localist symbolic input and output 
units. These may contain the names of the categories of different visual features (e.g. 
blue, square), the name of the object as a whole, or a full description of the objects 
(e.g. blue + square = object A).  

This new stimulus set is intended to be more flexible than the one used in Simula-
tion one. Specifically, in this simulation the distinction between the periphery and 
the center of the retina image becomes irrelevant since the color and shape com-
pletely overlap. 

3.2   The Neural Network and Training Procedure 

A three-layer, feedforward neural network was used (Fig. 5). The input layer con-
sisted of a retina with 75 units and a symbolic input group containing nine units. The 
retina had three units for each of the 25 pixels, measuring its RGB component. The 



symbolic input group consisted of nine units receiving names for the colors, shapes 
and objects perceived. The hidden layer had six units, organized into two separated 
groups of three units each. The output layer was structured in the same way as the 
symbolic input group, with nine units representing the symbolic output. 

The input layer was fully connected to the hidden layer. The symbolic output units 
representing the names for the objects were fully connected to all hidden units. The 
output units indicating shapes were only connected to the first three hidden units, 
whilst those indicating colors had connections solely to the last three hidden units. 
This modular connectivity forces the functional division of the hidden layer into a 
group dedicated to categorizing shapes and a group to classify colors. Note that the 
retina units are not artificially divided into two groups as in simulation one.  

The error backpropagation algorithm was used to train the network. Training was 
organized in three stages: Entry-Level naming, Entry-Level imitation and naming, 
and Higher-Level learning (Fig. 3b). In the Entry-Level naming stage the neural nets 
are initially trained to categorize (through naming) the color and shape of objects 
perceived on the retina. The retinal stimuli and names for colors and shapes are 
presented simultaneously in input. The networks learn to respond to the symbolic 
and retinal stimuli indicating the corresponding names for the color and shape in 
output. In the Entry-level imitation and naming stage an extra imitation learning 
cycle is executed in addition to the repetition of the naming cycles. Imitation consists 
on the use of only the symbolic units in both the input and the output layers. During 
these first two stages the networks learn through direct trial and error experience 
supervised by corrective feedback. Visual stimuli are categorized and linked to arbi-
trary grounded names.  

In the third training phase (Higher-Level learning), networks acquire new higher-
order categories through symbolic descriptions only. New categories are built by 
combining grounded names. Each description contains the name of a shape, a color 
and the name of a object that is new to the network. The grounding test is performed 
at the end of training.  

3.3   Results 

The training procedure was replicated with 30 networks having different initial ran-
dom seeds. The momentum was 0.9 for all stages. The learning rate was 0.2 for the 
first stage and 0.5 for stages two and three. The stimuli were presented in random 
order during EL categorization and in sequential order afterwards.  

All 30 networks completed the three training tasks successfully. The networks 
categorized the colors and shapes of the training stimuli correctly, with a success rate 
of 100%. The percentage of correct responses (i.e. production of the correct output 
name for the shape/color/object input) was computed using a winner-takes-it-all 
approach in which the unit with highest activation determines the name of the input 
image.  

After the networks had completed the final stage, 27 retinal stimuli depicting new 
objects were presented to the networks for the first time, in order to check if ground-
ing had been “transferred”  from directly grounded names to higher-order categories. 
The rate of correct test responses for the 30 nets was 85%. Even when the networks 



had never seen the test images before, they were able to categorize most of them 
correctly.  

4 Conclusion 

In this paper we have presented two simulations that model autonomous cognitive 
systems, immune to the symbol grounding problem: the connections between sym-
bols and their meanings are direct and intrinsic to the system, without need for me-
diation by an external interpreter. 

Our results reinforce the approach to symbol grounding based on fully connection-
ist models. The same network processes both the sensorimotor grounding and the 
generation of new categories through symbolic learning. The modular organization 
of the hidden units suggests that it is important that sensorimotor grounding be sepa-
rated for different classification features. In fact, when a fully distributed network 
was used [10], the grounding transfer was difficult to achieve. 

In order to improve the psychological plausibility and scalabilty of connectionist 
approaches to the symbol grounding, various extensions of the models presented here 
are being studied. For example, alternative learning algorithms like Kohonen’s self 
organizing map and hebbian learning are being tested for the basic categorization 
stage. 
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